

Dehydrogenative [4 + 2] Cycloaddition of Formamides with Alkynes through Double C–H Activation

Yoshiaki Nakao,* Eiji Morita, Hiroaki Idei, and Tamejiro Hiyama*^{,†}

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

Supporting Information

ABSTRACT: Formamides having 1-arylalkyl groups on nitrogen undergo an unprecedented dehydrogenative [4 + 2]cycloaddition reaction with alkynes via nickel/AlMe₃ cooperative catalysis to give highly substituted dihydropyridone derivatives in good yields. Notably, the transformation proceeds through double functionalization of $C(sp^2)$ -H and $C(sp^3)$ -H bonds in the formamides.

vcloaddition reactions represent one of the most important class of transformations in organic synthesis. A diverse range of ring structures can be constructed by these transformations in a single operation starting with two or more compounds.¹ A number of transition-metal complexes have been investigated as mediators or catalysts for cycloaddition reactions,² many of which provide cyclic molecules that are inaccessible by classical concerted cycloaddition reactions such as the Diels-Alder reaction. A key common feature of transitionmetal-mediated cycloaddition reactions is a metallacycle intermediate, which is typically formed through the reaction of a metal center with unsaturated C-C or C-heteroatom bonds. Recent studies have shown that the key metallacycle intermediates can also be formed through metalation of unreactive C-H bonds. For example, the reaction of reactive C-halogen, O-H, or N-H bonds at a metal center followed by that of unreactive C-H bonds in an intramolecular manner leads to a metallacycle species (Scheme 1).³ Subsequent reactions with unsaturated compounds give cycloadducts, allowing direct functionalization of C-H bonds to afford synthetically useful cyclic products. Ultimately, the metallacycle intermediates could also be generated by sequential activation of two C-H bonds. Cycloaddition reactions involving such double C-H functionalization allow the use of less-oxidized starting materials and thus should be of great synthetic potential in terms of atom⁴ and redox economy.⁵ Only a limited number of examples that proceed through activation of $C(sp^2)$ -H bonds have been reported,⁶ whereas no precedents involving unreactive $C(sp^3)-H$ functionalization⁷ are available.⁸ We report herein the oxidative cycloaddition reaction of N,N-bis(1-arylalkyl)formamides with alkynes via functionalization of formyl $C(sp^2)$ -H and alkyl $C(sp^3)$ -H bonds. A catalytic cycle involving oxidative addition of the formyl $C(sp^2)$ -H bond followed by hydronickelation of the alkyne and intramolecular $C(sp^3)$ -H activation by the resultant alkenyl group bound to the nickel center to form a key nickelacycle intermediate is proposed.

Scheme 1. Strategies for Metallacycle Formation through **C-H** Activation

We recently reported that the $C(sp^2)$ -H bond of various formamides can be functionalized by cooperative nickel/Lewis acid (LA) catalysis to allow hydrocarbamoylation of unsaturated compounds.⁹ The reaction of (*R*,*R*)-*N*,*N*-bis(1-phenylethyl)formamide [(R,R)-1a] having over 99% enantiomeric excess (ee) with 4-octyne (2a) in the presence of bis(1,5cyclooctadiene)nickel [Ni(cod)₂, 1 mol %], tri(*tert*-butyl)phosphine $[P(t-Bu)_3, 4 \mod \%]$, and trimethylaluminum (AlMe₃, 20) mol %) in toluene at 80 °C for 21 h (conditions similar to those for the hydrocarbamoylation reaction⁹) gave the expected α_{β} . unsaturated amide 4aa in only 4% yield, and dihydropyridone 3aa was obtained instead in 91% yield (Table 1, entry 1). Use of $P(t-Bu)_3$ as a ligand was crucial: use of PCy₃ resulted in ~10% yield of 3aa, and other ligands gave not even trace amounts of the products. The ee value for 3aa was found to be over 99%, showing that no loss of the stereochemical information in (R,R)-1a was observed under the reaction conditions. Lack of either of the catalyst components resulted in no formation of 3aa and 4aa. The reaction of 7-tetradecyne (2b) gave a stereoisomeric mixture of tetradec-7-ene (70% yield) and the corresponding cycloadduct 3ab (entry 2), suggesting that excess alkyne serves as a hydrogen acceptor. (E)-Tetradec-7-ene was formed gradually under the reaction conditions, probably through isomerization of the initially formed (Z)-alkene on the basis of the reaction profile monitored by GC. Formamides with other bulky N-substituents [e.g., N,N-diisopropylformamide⁹ and N-isopropyl-N-(1-phenylethyl)formamide] resulted in either preferential hydrocarbamoylation of alkynes or no reaction. Curiously, meso-1a showed a lower reaction rate and gave the corresponding adduct in 66% yield under identical conditions after 21 h (entry 3). Therefore, two 1-phenylethyl groups having the same configuration are crucial for this transformation, presumably because they allow a

Received: November 19, 2010 Published: February 22, 2011

Table 1. Dehydrogenative [4 + 2] Cycloaddition of Formamides with Alkynes Catalyzed by Ni/AlMe₃

 $[\]begin{array}{l} \text{Ar}=\text{Ph}\;(\textbf{1a});\; 4\text{-MeO}-C_6\text{H}_4\;(\textbf{1b});\; 4\text{-F}-C_6\text{H}_4\;(\textbf{1c});\; 1\text{-Np}\;(\textbf{1d})\\ \text{R}^1,\; \text{R}^2=\text{Pr}\;(\textbf{2a});\; \text{Hex}\;(\textbf{2b});\; \text{Ph}\;(\textbf{2c});\; (\text{CH}_2)_2\text{OSi}(\textit{i}\text{-}\text{Pr})_3,\; \text{Pr}\;(\textbf{2d});\\ \text{Me},\; \textit{i}\text{-}\text{Pr}\;(\textbf{2e});\; \text{Me},\; \textit{i}\text{-}\text{Bu}\;(\textbf{2f});\; \text{Et},\; \text{Ph}\;(\textbf{2g});\; \text{SiMe}_3,\; \text{Ph}\;(\textbf{2h}) \end{array}$

			1201	time	yield of			
entry	1	2	n	(h)	major product 3+3'-	+4 (%) ^a 3/3' ^b	3+3'/4"
1 2	1a ^c 1a	2a 2b	1	21 21	Ph'' R $B $ B	95 85 ^d	Ξ	96:4 93:7
3	1'aª	2a	1	21	Ph N Ph 3'aa	66	-	97:3
4	1a ^c	2c [/]	10	7	Ph N Ph Ph' Ph	79	1777	>95:5
5	1a	2d [/]	10	36		86	76:24	96:4
6 7 ^g	1a 1a	2e 2f	10 10	1 21	Ph N Me Ph'' R 3ae (B = /PP)	79 63	62:38 >95:5	80:20 80:20
8	1a	2g ^{f,h}	⁷ 10	1	3af (R = t Bu) $Ph + N$ $Ph'' 3ag$	80	57:43	>95:5
99	1a	2h [/]	10	24	Ph. SiMe ₃	23	>95:5	>95:5
10 11 12	1b 1c 1d	2a 2a 2a [/]	5 5 5	2 4 89		99 97 74	Ξ	86:14 92:8 >95:5
13	1e/	2a	5	23	$\begin{array}{c} \textbf{3ba} (Ar = 4 - \text{MeO} - C_6 H_4) \\ \textbf{3ca} (Ar = 4 - F - C_6 H_4) \\ \textbf{3da} (Ar = 1 - \text{naphthyl}) \\ \hline \\ \textbf{Ph}^{\prime} \\ \textbf{Ph}^{\prime} \\ \textbf{Bh}^{\prime} \\ $	85	_	>95:5

^{*a*} Isolated yields based on 1. ^{*b*} Estimated by GC and/or ¹H NMR analysis of the crude products. ^{*c*} >99% ee as estimated by chiral HPLC. ^{*d*} Tetradec-7-ene (E/Z = 19:81) was also isolated in 70% yield. ^{*e*} Meso isomer of 1a. ^{*f*} 4.4 mmol was used. ^{*g*} The reaction was run at 100 °C. ^{*h*} Slow addition over 1 h (2g) or 5 h (2h). ^{*i*} 6.6 mmol was used. ^{*j*} (R^*, R^*)- N_iN -bis(1-phenylpropyl)formamide. ^{*k*} Diastereoselectivity = 96:4.

Figure 1. Molecular structure of 3ac.

Scheme 2. Reactions of Deuterated 1a with 2f

conformation suitable for the $C(sp^3)$ -H functionalization. The reaction of (R,R)-1a with diphenylacetylene (2c) exclusively gave cycloadduct 3ac in 79% yield (entry 4), whose structure was unambiguously confirmed by X-ray crystallography (Figure 1). Alkynes having sterically biased substituents also reacted with racemic 1a (entries 5–9). Whereas modest regioselectivity was observed with alkynes 2d, 2e, and 2g, 4,4-dimethylpent-2-yne (2f) and phenyl(trimethylsilyl)acetylene (2h) gave a single cycloadduct. Generally, a smaller substituent was introduced at the α -position of the carbonyl in 3, except for 3ad and 3ah. The attempted cycloaddition reactions with terminal alkynes were futile because of rapid tri- and/or oligomerization of the alkynes. Both electron-donating and -withdrawing groups on the phenyl ring of 1a were tolerated, giving the corresponding adducts 3ba and **3ca** in good yields (entries 10 and 11). On the other hand, the reaction of 1-naphthyl variant 1d with 2a was sluggish, presumably as a result of steric repulsion induced by the aryl group (entry 12). (R*,R*)-N,N-Bis(1-phenylpropyl)formamide (1e) also gave six-membered-ring product 3ea through functionalization of its methylene $C(sp^3)$ -H bond rather than the terminal methyl group (entry 13). Notably, the $C(sp^3)$ -H bond functionalization took place highly diastereoselectively.

Some additional experiments were performed to gain mechanistic insights into the present cycloaddition reaction. First, the reaction of isolated hydrocarbamoylation product **4aa** under the reaction conditions gave no trace amount of **3aa**, suggesting that the present cycloaddition reaction is independent of the hydrocarbamoylation. Second, the reaction of **1a**-*d*, which was deuterated at the formyl C–H bond, with **2f** in C₆D₆ showed the formation of **3af** and **4af**-*d* as well as (*Z*)-3-deuterio-4,4dimethyl-2-pentene¹⁰ by ¹H NMR analysis of the crude product (Scheme 2). On the other hand, the identical reaction using **1a**-*d*₆ labeled on both methyl groups of **1a** gave **3af**-*d*₅, **4af**-*d*₆, and (*Z*)-2-deuterio-4,4-dimethyl-2-pentene¹⁰ (Scheme 2). These results indicate that hydrogenation of the alkyne takes place in a manner distinct from simple addition of free H₂ across alkynes, which would have led to the formation of identically deuterated (*Z*)-4,4-dimethyl-2-pentene.

On the basis of these observations, the following catalytic cycle is proposed (Scheme 3). The formamide coordinated to AlMe₃ at the carbonyl oxygen interacts with an electron-rich nickel(0)species through η^2 -coordination to give A, which undergoes oxidative addition of the formyl C-H bond to give B. Coordination followed by migratory insertion of the alkyne takes place, giving **D** via **C**. While C–C bond-forming reductive elimination from **D** gives the hydrocarbamoylation product 4^9 , the sterically demanding 1-arylalkyl group retards this pathway and induces $C(sp^3)$ -H activation through a concerted cyclometalation, presumably through a transition state like TS_{D-E} , to give fivemembered nickelacycle E.¹¹ A second migratory insertion of a coordinating alkyne takes place at the sp-carbon bearing the bulkier substituent R² to give seven-membered nickelacycle F, which reductively eliminates the cycloadduct 3. Decomplexation of AlMe₃ from 3 and its recomplexation with 1 are followed by the formation of η^2 -nickel complex **A**, which reenters the proposed catalytic cycle. The observed difference in the 3af/4af-d and $3af-d_5/4af-d_6$ ratios (Scheme 2) possibly suggests that the

functionalization of the $C(sp^3)$ —H bond may be rate-determining. Highly electron-donating, bulky $P(t-Bu)_3$ may facilitate both of the C—H activation steps in terms of electron density and steric environment of the nickel center.

In conclusion, we have demonstrated that N,N-bis(1-arylalkyl)formamides undergo an unprecedented dehydrogenative [4 + 2] cycloaddition reaction with alkynes via nickel/AlMe₃ cooperative catalysis through double functionalization of otherwise unreactive $C(sp^2)$ —H and $C(sp^3)$ —H bonds to give highly substituted dihydropyridone derivatives, which can serve as versatile synthetic precursors for nitrogen-containing six-membered heterocycles.¹² Current efforts are being directed toward understanding in detail the reaction mechanisms for the two C— H activation steps and further development of this class of novel cycloaddition reactions.

ASSOCIATED CONTENT

Supporting Information. Detailed experimental procedures, spectroscopic and analytical data, and crystallographic data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

yoshiakinakao@npc05.mbox.media.kyoto-u.ac.jp; thiyama@kc. chuo-u.ac.jp

Present Addresses

[†]Research & Development Initiative, Chuo University, Bunkyoku, Tokyo 112–8551, Japan.

ACKNOWLEDGMENT

We thank Professor Masaki Shimizu for X-ray crystallographic analysis. This work was financially supported by Grants-in-Aid for Scientific Research (S) (21225005 to T.H.) and Scientific Research on Innovative Areas "Molecular Activation Directed toward Straightforward Synthesis" (22105003 to Y.N.) from JSPS and MEXT, respectively.

REFERENCES

(1) Cycloaddition Reactions in Organic Synthesis; Kobayashi, S., Jørgensen, K. A., Eds.; Wiley-VCH: Weinheim, Germany, 2002.

(2) For reviews, see: (a) Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23, 539. (b) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901. (c) Yet, L. Chem. Rev. 2000, 100, 2963. (d) Varela, J. A.; Saá, C. Chem. Rev. 2003, 103, 3787. (e) Croatt, M. P.; Wender, P. A. Eur. J. Org. Chem. 2010, 19.

(3) For reviews, see: (a) Zhang, M. Adv. Synth. Catal. 2009, 351, 2243. (b) Thansandote, P.; Lautens, M. Chem.—Eur. J. 2009, 15, 5874.

(4) Trost, B. M. Science 1991, 254, 1471.

(5) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int. Ed. 2009, 48, 2854.

(6) Fukutani, T.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Chem. Commun. 2009, 5141.

(7) For reviews, see: (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (b) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.—Eur. J. 2010, 16, 2646.

(8) For cross-coupling reactions between unreactive $C(sp^2)$ -H and $C(sp^3)$ -H bonds, see: (a) Rong, Y.; Li, R.; Lu, W. *Organometallics* **2007**,

Journal of the American Chemical Society

26, 4376. (b) Deng, G.; Zhao, L.; Li, C.-J. *Angew. Chem., Int. Ed.* **2008**, *47*, 6278. (c) Liégault, B.; Fagnou, K. *Organometallics* **2008**, *27*, 4841. (d) Deng, G.; Ueda, K.; Yanagisawa, S.; Itami, K.; Li, C.-J. *Chem.—Eur. J.* **2009**, *15*, 333.

(9) Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 5070.

 $(10)\;$ The observed low yields of the alkenes may be ascribed to their volatility.

(11) For a related cyclometalation through activation of a $C(sp^2)$ -H bond to form a five-membered nickelacycle, see: Carmona, E.; Palma, P.; Paneque, M.; Poveda, M. L. *J. Am. Chem. Soc.* **1986**, *108*, 6424.

(12) For reviews, see: (a) Bailey, P. D.; Millwood, P. A.; Smith, P. D. *Chem. Commun* **1998**, 633. (b) Laschat, S.; Dickner, T. *Synthesis* **2000**, 1781.